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Abstract: New olefin metathesis methodology for the homologation of terminal
olefins to protected o,B-unsaturated aldehydes is described. Acrolein acetals,
including asymmetric derivatives, are robust cross-metathesis substrates as
evidenced by reaction yields of 80-90% at catalyst loadings of 2-5 mol %
(PCy3)2CL,Ru=CHPh (1). © 1999 Elsevier Science Ltd. All rights reserved.

The preparation of o,B-unsaturated aldehydes can be accomplished by Wittig? homologation of aldehydes
employing reagents such as PhyP=CHCHO?® or with acetal* or imine® protected two-carbon ylides. Addition-
elimination methods have also been used to homologate aldehydes.®”® In cases where a terminal olefin is serving
as an aldehyde precursor, a cross-metathesis approach offers a means for direct homologation (Scheme 1).
Herein, we report an efficient olefin metathesis protocol for converting a terminal olefin to the corresponding «,B-

unsaturated aldehyde using ruthenium benzylidene 1° and acrolein acetals.
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Although acrylonitrile has been successfully employed in molybdenum-catalyzed cross-metathesis
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reactions, = conjugated olefins including acrolein were found to be unreactive in reactions using catalytic

ruthenium benzylidene 1. Unconjugated acrolein acetals, on the other hand, were found to be viable metathesis

substrates."!

Our initial investigations employed the commercially available acrolein diethyl acetal (2) and 9-
decen-1-ol benzoate (3) (Scheme 2). An optimization study led to the following observations: o,B-unsaturated
aldehyde 4 was obtained in 75-80% yield using either 2.5 or S mol % 1 and 2 equiv. of acetal 2 (entries 2 and 3).
Although the acid-sensitive diethyl acetal cross-metathesis product could be isolated with chromatography using
Et;N-treated silica gel, it was more convenient to recover the o,B-unsaturated aldehyde after formic acid
hydrolysis.'> We observed that reactions using older samples of diethyl acetal gave low yields, presumably due
to small amounts of hydrolysis-derived acrolein. Increasing the number of acetal equivalents (entry 4) was found
to suppress the formation of product 4, presumably due to engaging the propagating ruthenium carbene in
unproductive acetal homodimerization.
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Using a Luche reduction," o,B-unsaturated aldehyde 4 was converted to allylic alcohol § in a highly E-
selective manner. This 3-step allylic alcohol synthesis is an improvement, in terms of both yield and E-selectivity,
upon our recently disclosed 2-step metathesis procedure using protected (Z)-2-butene-1,4-diols.'*
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The reactivity of acetal 2 was unexpected, as it was originally thought that allylic disubstitution would
hinder the cross-metathesis reaction. Extending this methodology to substrates with allylic trisubstitution could,
in principle, provide access to additional functional groups such as a,B-unsaturated esters and methyl ketones.
However, attempts at Ru-catalyzed cross-metathesis of 3 with orthoester 6'° or ketal 7'¢ proved unsuccessful.

Scheme 3
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Cross-metathesis reactions between terminal olefin 3 and 2-vinyl-1,3-dioxolane (8), a commercially
available acrolein acetal with enhanced acid-stability compared to diethyl acetal 2, gave good to excellent yields of
the dioxolane-protected c,B-unsaturated aldehyde 10 (Scheme 3). Under these conditions, a 74% isolated yield of
10 was obtained with the catalyst loading reduced to as little as 1 mol % 1 (entry 5). Yields of 87-91% (7:1 E/Z)
were obtained for reactions using catalyst loadings of 2-5 mol % 1 (entries 6-8).!"
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Extending the scope of the reaction to include asymmetric acrolein acetals was considered worthwhile
because chiral o.fB-unsaturated acetals are useful synthetic intermediates.'’® Accordingly, diethyl vinylidene-L-

tartrate (9) was prepared'® and found to provide an E-selective (6.7:1 E/Z by 'H NMR) cross-metathesis product
11 in excellent yield (Scheme 3, entry 9).
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Figure 1. Reaction profile for cross-metathesis reaction employing alkene 12 (0.2 M), vinyl
dioxolane 8 (2 equiv.), and 2.5 mol % catalyst 1 (45 °C, CH,Cl,). The concentration of 13 consists of a
ca. 7:1 E/Z olefin composition throughout the course of the reaction. Data obtained from GC/MS

analysis of reaction aliquots (1,4-dichlorobenzene as internal standard, data corrected for relative
response}.

A GC/MS assay was used to measure the qualitative rate of cross-metathesis. Figure 1 shows a
representative reaction profile for a standard reaction employing 2.5 mol % 1, 2 equiv. vinyl dioxolane 8, and 0.2
M methyl 10-undecylenate 12. The data show the reaction is essentially complete (>90%) after 3 hours.

Attempting to build upon our earlier work,' which demonstrated certain advantages to using symmetric
disubstituted olefins as cross-metathesis partners, we prepared fumaraldehyde bis(ethylene glycol acetal) (14)*°
by Ru-catalyzed dimerization' of vinyl dioxolane 8. However, bis-acetal 14 was not as reactive as vinyl
dioxolane 8 in cross-metathesis reactions with terminal olefin 3, presumably due to steric factors (Scheme 4).
Interestingly, the E/Z ratio improved when the bis-acetal was employed (14: E/ZZ=9.7:1; 8: E/Z="T:1).
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Scheme 4. Reagents and Conditions: (a) 5 mol % 1/0.2 M 3/ CH,Cl, / 45 °C; (b) HCO,H-CH,Cl, (1:8) / RT.

Extending the methodology to the construction of B,y-unsaturated aldehydes via cross-metathesis was also
explored. Unfortunately, 3-butenal diethyl acetal 15 does not appear to be a promising substrate for Ru-catalyzed

cross-metathesis reactions. Yields and E/Z selectivities of the corresponding B,y-unsaturated aldehydes were
generally poor (Scheme 4).%!
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In conclusion, acrolein acetals 2, 8, and 9 have been shown to be remarkably reactive in cross-metathesis
reactions with terminal olefins. This method offers a mild alternative to traditional homologative methods for

preparing o,f-unsaturated aldehydes. The use of asymmetric acrolein equivalents, coupled with emergent
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asymmetric metathesis catalysts, suggests a means for effecting catalytic kinetic resolutions via cross-

metathesis. Current investigations are directed toward this end, and results will be reported in due course.??
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